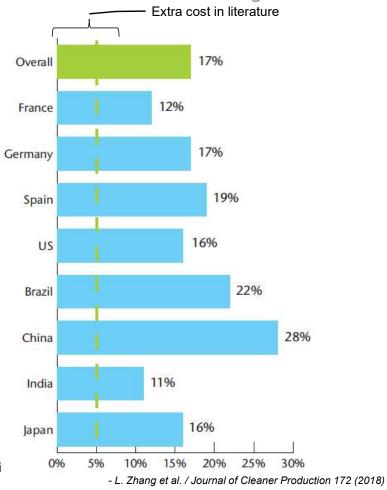
How wooden buildings create value?

Seppo Junnila, Professor Sustainable Real Estate UKKE052 UrWood

Content

- Towards carbon neutral buildings
- Environmental value
- Economic value



Green construction costs

- How much extra does it cost to build green buildings (LEED Gold or better)?
 - 10%
 - 20%
 - 30%
 - 40%

Aalto University
School of Engineering

"How much more do you think a certified sustainable building would cost to build relative to a normal building?"

seppo.junnila@aalto.fi

Value of green buildings

What is the value of green buildings?

- 5 %
- 10%
- 15 %

A Review of the Financial Performance of Certified Properties Niina Leskinen * Jussi Vimpari, Seppo Junnila Sustainability journal, 2020

Value, median in lit. Tolo premium (6% house 2013)

UK (Chegut et al 2014)

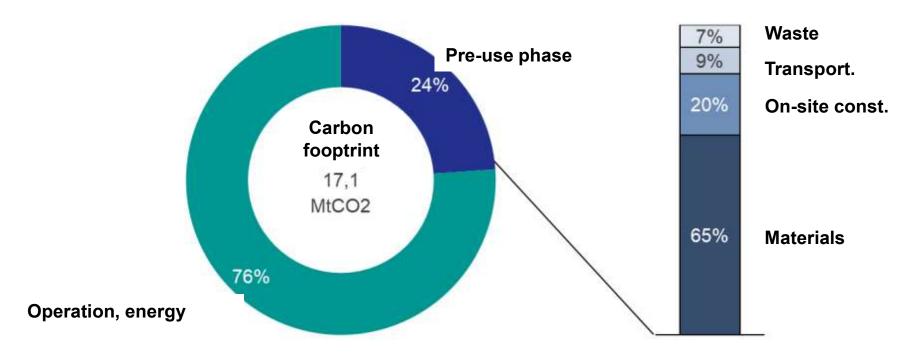
Wiley et al 27

VS. 6% extra COSt

117 Swiss (Salvi et al 2008) **VALUE** 10% 0% 20% 30% 40%

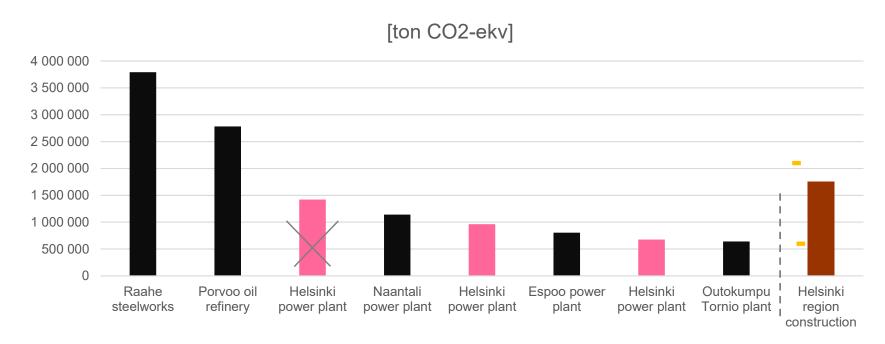
Towards carbon neutral buildings

- Life cycle understanding
- Wood buildings

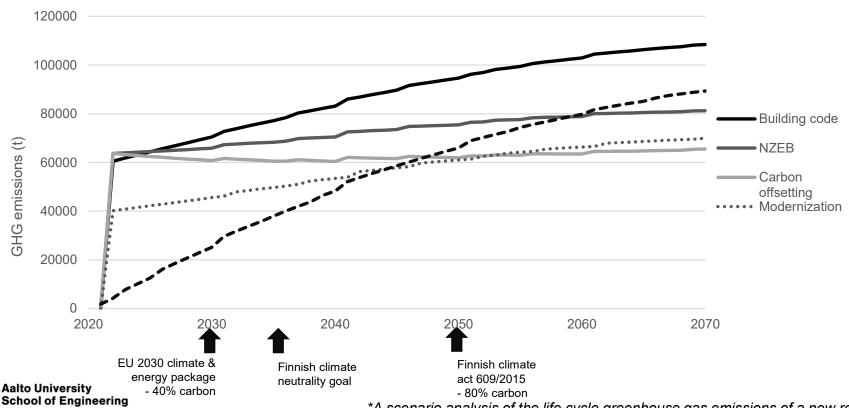


Climate mitigation ≠ Carbon neutrality => Paradigm shift

- Timing is essential
- Carbon neutral operation is not the solution

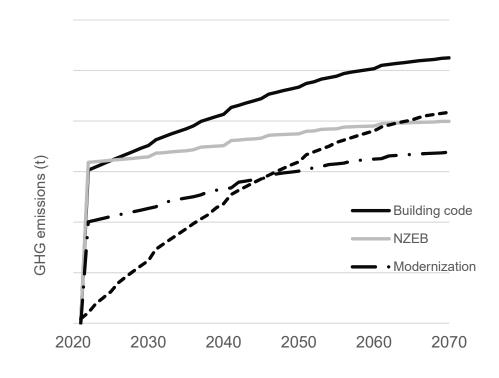


Building life cycle emissions (traditional approach)


Top carbon emiters in Finland 2018

*https://www.energiavirasto.fi/ Can life-cycle assessment produce reliable policy guidelines in the building sector? A Säynäjoki, J Heinonen, S Junnila, A Horvath - Environmental Research Letters, 2017 seppo.junnila@aalto.fi

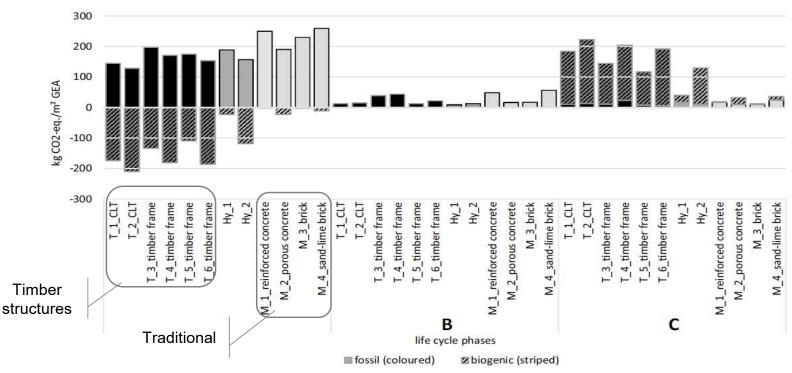
Construction carbon spike and operation, new residential development



*A scenario analysis of the life cycle greenhouse gas emissions of a new residential area seppo.junnila@aalto.fi

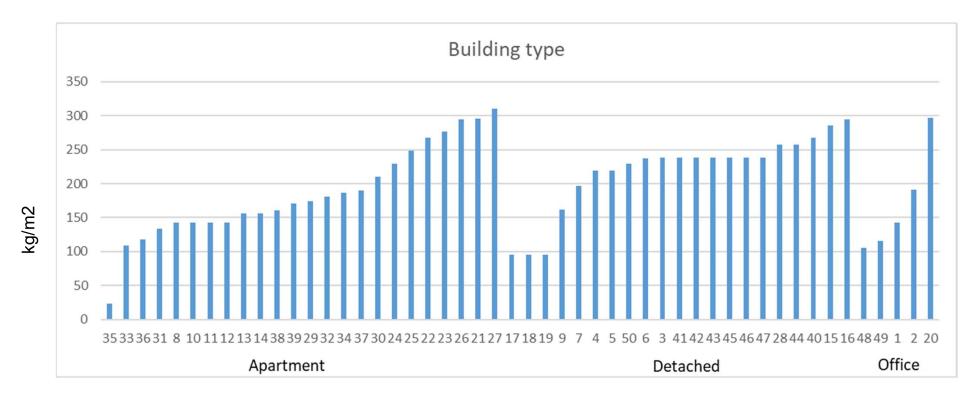
A Säynäjoki, J Heinonen, S Junnila 2012
Environmental Research Letters 7 (3), 034037

Construction carbon spike mitigation

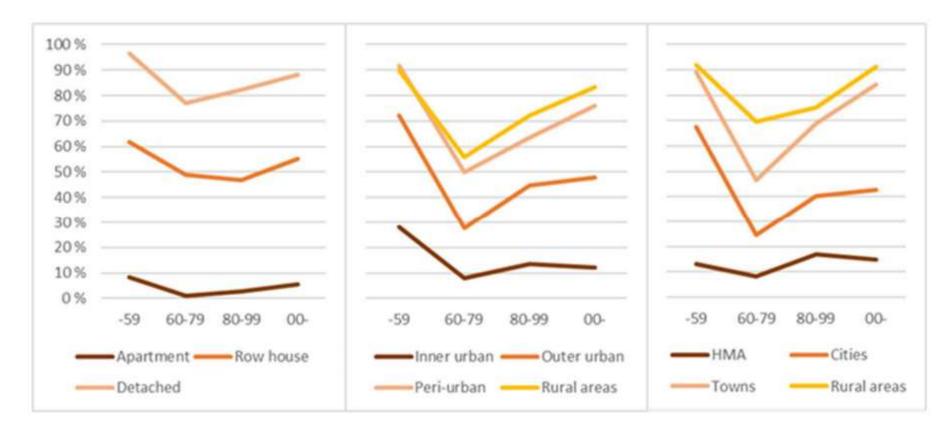

- Circular economy
 - 1) Sharing spaces
 - 2) Reuse of buildings
 - 3) Reuse of building parts
 - 4) Reuse of building materials
- Materials with Carbon sink
 - Timber
 - New innovative materials to come...
- Low-carbon manufacturing
 - New manufacturing processes, renewable energy, etc.
 - Carbon offsetting

Wood vs. traditional structures

GWP and carbon storage for large residential buildings for module A+B+C



*"Environmental aspects of material efficiency versus carbon storage in timber buildings", Hafner, A. & Schäfer, S. Eur. J. Wood Prod. (2018) 76: 1045"


seppo.junnila@aalto.fi

Carbon storage in wooden buildings

Wooden housing in Finland

Ottelin et al 2021, "Comparative carbon footprint analysis of residents of wooden and non-wooden houses"

Economic viability of wooden buildings

- Construction costs
- Market value

Construction costs of wooden multistory buildings

Authors	Country/Region	Concepts				
		Wood is cheaper	Wood is not cheaper	Wood has faster construction time	Believes wood can be cheaper in future	
1 Cazemier (2017)	Australia		X	Х	X	
2 Hossaini et al. (2015)	Canada	X		N/A		
3 Jones et al. (2016)	United Kingdom	2	X	X	X	
4 Kopzcynski (2018)	United States		X	N/A	X	
5 Koppelhuber et al. (2017)	Germany	/	/	X	X	
6 Kramer and Richie (2018)	Australia	X		X		
7 Nykänen et al. (2017)	Europe	_	X	X	X	
8 Richie and Stephan (2018)	Australia	X		X		
9 Svaljenka et al. (2017)	Slovakia	X		X		
10 Thomas and Ding (2018)	Australia	X		X		
11 Mäkimattila (2019)	Finland		X	X		
12 Mäkimattila (2019)	Sweden	X		X		

N/A indicates that no information regarding the topic was found.

/ indicates that the costs may be lower/higher depending on the case and construction technique

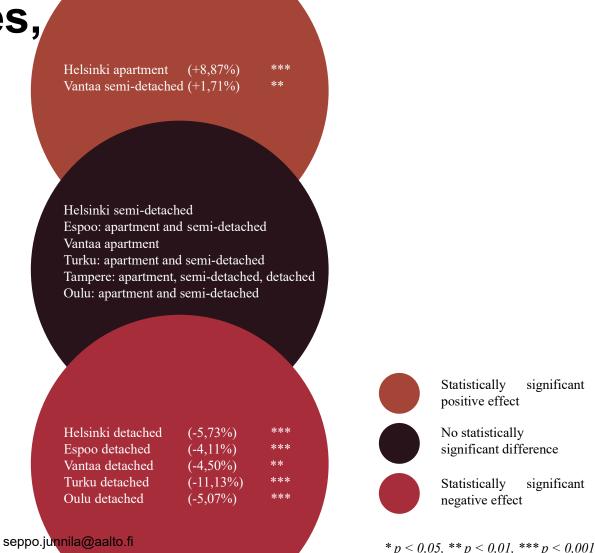
Aalto University
School of Engineering

"Economic feasibility of wood-based structures – improving urban carbon neutrality strategies. Talvitie, Vimpari, Junnila- Environmental Research: seppo.junnila@aalto.fi Infrastructure and Sustainability, 2021"

Market price of wood buildings

Alternative regression estimates for log of transaction price

	(1) Helsinki	(2) Helsinki	(3) Helsinki	(4) Helsinki	(5) Helsinki
Wood	-0,259**	-0,167*	0,043	0,041*	0,085***
Std. err.	[0,079]	[0,07]	[0,024]	[0,020]	[0,020]
R-squared	0,003	0,574	0,85	0,894	0,91
Adj R-squared	0,003	0,574	0,85	0,894	0,909
N	14888	14888	14888	14867	14867
(a) Age & Size		yes	yes	yes	yes
(b) Housing characteristics			yes	yes	yes
(c) CBD Euclidean Distance			yes	yes	yes
(d) Neighbourhood characteristics				yes	yes
(e) Postal codes					yes [79]


"Economic feasibility of wood-based structures – improving urban carbon neutrality strategies. Talvitie, Vimpari, Junnila- Environmental Research: Infrastructure and Sustainability, 2021"

Market price: cities, building types

- Market premiums in Helsinki for apartment buildings
- No price effect for apartment buildings in other major cities
- Detached buildings seem to have lower prices (and construction costs)

"Price premium for wooden dwellings? Wood-based structures as a tool to enable carbon neutrality for cities. Talvitie, Vimpari, Junnila, 2021

Wood on Certified buildings?

Table 6. Case building's total <u>LEED</u> points and LEED certification level.

Scenario	Con	OptCon	ConWood	Wood
Material selection points	5	5	8	14
Other points	32	32	32	32
Total points	37	37	40	46
LEED level	-	2 — 0	Certified	Certified

"Embodied emissions of buildings - A forgotten factor in green building certificates, Ali Amiri, Nargessadat Emami, Juudit Ottelin, Jaana Sorvari, Björn Marteinsson, Jukka Heinonen, Seppo Junnila,, Energy and Buildings, Volume 241, 2021"

seppo.junnila@aalto.fi

Conclusion

- Cost of green building is less than anticipated
- Market premiums are typically higher than extra costs
- Carbon footprint of buildings today
 - 50% construction + 50% use
- Wooden urban building premiums are starting to show on markets

